MATHEMATICS ASSIGNMENT FOR ALL LEVEL 3

1. A=
$$\binom{X+Y}{6}$$
 $2Z-1$ and B= $\binom{9}{6}$ 11 A=B Find X,Y and Z Find A+B and A-B

Find A+B and A-B

2.
$$A = \begin{pmatrix} X - 4 & 7 \\ 3Y & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 6 & 7 \\ 10 & 3 \end{pmatrix}$ A=B Find X and Y

Find B+A and B-A

3. Find A+B and B-A

ī.

$$A = \begin{pmatrix} -1 & -2 & -3 \\ 2 & 1 & 3 \\ 1 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -7 & 2 & 3 \\ 0 & 1 & 3 \\ -2 & 4 & 0 \end{pmatrix}$$

II.

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 4 & 2 & -3 \end{pmatrix}, B = \begin{pmatrix} -5 & 5 & 9 \\ 2 & 10 & -9 \\ 8 & 6 & 1 \end{pmatrix}$$

Ш

$$A = \begin{pmatrix} 43 & -62 & 76 \\ 54 & -10 & 57 \\ 90 & -9 & 7 \end{pmatrix}, B = \begin{pmatrix} 31 & -7 & -2 \\ -6 & 83 & 2 \\ -28 & 49 & 99 \end{pmatrix}$$

IV.

$$A = \begin{pmatrix} -11 & 13 \\ 28 & 43 \end{pmatrix}, \quad B = \begin{pmatrix} -6 & 18 \\ 22 & -3 \end{pmatrix}$$

٧.

$$A = \begin{pmatrix} -4 & 5 \\ 2 & 7 \end{pmatrix}, B = \begin{pmatrix} -3 & -3 \\ 0 & 11 \end{pmatrix}$$

4. A. Find the value of X

$$X = 3A - 4B,$$

$$A = \begin{pmatrix} 4 & -2 \\ 1 & -7 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 6 & -5 \end{pmatrix}$$

B. Find the value of X

$$X = A + 3B$$

$$A = \begin{pmatrix} 1 & 5 & -1 \\ -1 & 2 & 2 \\ 0 & -3 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & -4 & 3 \\ 1 & -2 & -2 \\ -3 & 3 & -5 \end{pmatrix}$$

5. Solve and Discuss:

A.
$$(1+k)X - 3 = k(2x+1)$$

B.
$$(b+2)(x-1) = b(3x+4)$$

C.
$$(b-2)x + 3 = (b^2 - 1)(1-x)$$

- 6. A. Given $y = x^2 + 4x + 1$ and y = -x + 7
 - i. Sketch the curve $y = x^2 + 4x + 1$ and the line y = -x + 7
 - ii. Determine the coordinate of point of intersection of the curve $y = x^2 + 4x + 1$ and the line y = -x + 7
- B.. Given $y = 2x^2 3x + 1$ and y = x + 2
 - i. Sketch the curve $y = 2x^2 3x + 1$ and y = x + 2
- ii. Determine the coordinate of point of intersection of the curve $y=2x^2-3x+1$ and the line y=x+2
- 7. Find the value of k for which the equation $(2k-1)x^2+4x+k=0$ has:
 - A. Two real roots
 - B. No real root
 - C. One double root
- 8. Find the value of a for which $x^2 2ax + (a^2 1)$ is positive for all real values of x.