

L5 SOD A&B

PYTHON HOMEWORK

To be submitted on Monday

INSTRUCTIONS:

1. Write codes(python) on answer sheet.
2. Choose 3 questions of your choice.
3. Add comments where is needed.
4. Ensure you use proper indentation as python require

indentation

Write a Python program to process student results with the following
requirements:

 Store the student’s name (string), age (integer), and class (string) in
variables.

 Store marks for 5 subjects in a list, then convert the list to a set to
remove duplicates.

 Use a dictionary to store all student information (name, age, class,
marks).

 Calculate the student’s average marks using arithmetic operators.

 Use an if-elif-else statement to assign a grade based on the average:

o 90+ → "A"

o 80-89 → "B"

o 70-79 → "C"

o Below 70 → "Fail"

 Use a for loop to print each subject’s marks.

 Use continue to skip printing marks that are zero.

 Use break if any mark is above 100 (invalid mark).

 Include comments to explain each section of the program.

2. Simple Banking System
Write a Python program to manage customer bank transactions with the
following features:

 Prompt the user to enter their name and initial balance, storing them in
variables.

 Use a dictionary to store account information (name, balance, active
status).

 Use assignment operators (+=, -=) to update the balance after deposits or
withdrawals.

 Use comparison operators to check if the user has sufficient funds for
withdrawals.

 Use logical operators to verify:

o The account is active.

o The balance is non-negative.

 Use a while loop to repeatedly ask the user to choose an action: deposit,
withdraw, or exit.

 Use break when the user selects "exit".

 Use pass for invalid menu choices.

 Display the account details and transaction results clearly.

3. Online Shopping Cart System
Write a Python program for an online shopping cart with the following
functionality:

 Store available products in a list and their prices in a dictionary.

 Use a set to store unique items selected by the user.

 Use a while loop to repeatedly prompt the user to enter product names
until they type "done".

 Use the in operator to check if the entered product exists in the available
products list.

 Use continue to skip unavailable products.

 Use break to exit the loop when the user types "done".

 Calculate the total cost using arithmetic operators.

 Apply a 10% discount if the total is $100 or more; otherwise, no
discount.

 Include comments to explain each part of the code.

4. Employee Attendance & Salary System
Write a Python program to manage employee attendance and salary with these
features:

 Store the employee’s name (string), hourly rate (float), and hours worked
(integer).

 Use a tuple to store fixed working days of the week.

 Use a for loop to display each working day.

 Use logical operators to check if the employee completed full attendance
(e.g., worked all days).

 Use if-elif-else to categorize performance based on hours worked:

o 40+ hours → "Excellent"

o 30-39 hours → "Good"

o Below 30 hours → "Needs Improvement"

 Calculate salary using arithmetic operators, including exponentiation,
modulus, or floor division at least once.

 Use pass as a placeholder for a future "bonus calculation" function.

 Include comments for each important step.

5. Hospital Patient Management System
Write a Python program to manage patient details and symptoms with these
requirements:

 Store the patient’s name (string), age (integer), weight (float), and
temperature (float).

 Use a dictionary to store patient details.

 Use a set to store unique symptoms entered by the user.

 Use a for loop to display all symptoms.

 Use membership operators (in, not in) to check for specific symptoms like
"fever".

 Use if-elif-else to classify the patient’s condition based on temperature:

o ≥39°C → "Critical"

o 37-38.9°C → "Needs Attention"

o <37°C → "Normal"

 Use a while loop to accept symptoms until the user types "stop".

 Use continue to skip empty entries.

 Use break to exit the loop when "stop" is entered.

 Include comments to explain each code block.

